Hermitian Manifolds of Pointwise Constant Antiholomorphic Sectional Curvatures

نویسندگان

  • GEORGI GANCHEV
  • OGNIAN KASSABOV
چکیده

In dimension greater than four, we prove that if a Hermitian non-Kaehler manifold is of pointwise constant antiholomorphic sectional curvatures, then it is of constant sectional curvatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Totally umbilical radical transversal lightlike hypersurfaces of Kähler-Norden manifolds of constant totally real sectional curvatures

In this paper we study curvature properties of semi - symmetric type of totally umbilical radical transversal lightlike hypersurfaces $(M,g)$ and $(M,widetilde g)$ of a K"ahler-Norden manifold $(overline M,overline J,overline g,overline { widetilde g})$ of constant totally real sectional curvatures $overline nu$ and $overline {widetilde nu}$ ($g$ and $widetilde g$ are the induced metrics on $M$...

متن کامل

Manifolds with Pointwise 1/4-pinched Curvature

In this lecture we will describe our recent joint work with SimonBrendle ([1], [2]) in which we give the differentiable classification ofcompact Riemannian manifolds with pointwise 1/4-pinched curvature.Our theorems are:Theorem 1. Let M be a compact Riemannian manifold with pointwise1/4-pinched curvature. Then M admits a metric of constant curvature,and therefore is ...

متن کامل

Manifolds with 1/4-pinched Curvature Are Space Forms Simon Brendle and Richard Schoen

One of the basic problems of Riemannian geometry is the classification of manifolds of positive sectional curvature. The known examples include the spherical space forms which carry constant curvature metrics and the rank 1 symmetric spaces whose canonical metrics have sectional curvatures at each point varying between 1 and 4. In 1951 H.E. Rauch [18] introduced the notion of curvature pinching...

متن کامل

Classification of Manifolds with Weakly 1/4-pinched Curvatures Simon Brendle and Richard Schoen

A classical theorem due to M. Berger [2] and W. Klingenberg [11] states that a simply connected Riemannian manifold whose sectional curvatures all lie in the interval [1, 4] is either isometric to a symmetric space or homeomorphic to Sn (see also [12], Theorems 2.8.7 and 2.8.10). In this paper, we provide a classification, up to diffeomorphism, of all Riemannian manifolds whose sectional curvat...

متن کامل

Spectral Geometry and the Kaehler Condition for Hermitian Manifolds with Boundary

Let (M, g, J) be a compact Hermitian manifold with a smooth boundary. Let ∆p,B and ⊓ ⊔p,B be the realizations of the real and complex Laplacians on p forms with either Dirichlet or Neumann boundary conditions. We generalize previous results in the closed setting to show that (M, g, J) is Kaehler if and only if Spec(∆p,B) = Spec(2 ⊓ ⊔p,B) for p = 0, 1. We also give a characterization of manifold...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008